

Boadie W. Dunlop, MD, MS Emory University School of Medicine May 30, 2020 bdunlop@emory.edu Pharmacogenomic Decision Support Tools for Major Depressive Disorder

Disclosures: Boadie W. Dunlop, MD

Personal/Professional Financial Relationships with Industry, Last 12 Months

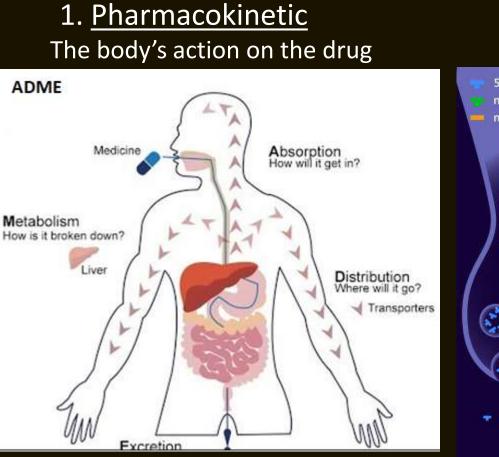
External Industry Relationships *	Company Names	Role
Equity, stock, or options in biomedical industry companies or publishers**	None	
Board of Directors or officer	None	
Royalties from Emory or from external entity	None	
Industry funds to Emory for my research	Acadia, Aptinyx, Compass Pathways, Otsuka, Sage, Takeda, NIH	Principal investigator/Co- investigator
Other	Greenwich Biosciences, Mol Dx, Myriad Neuroscience, Sage, Sophren, Otsuka	Consultant

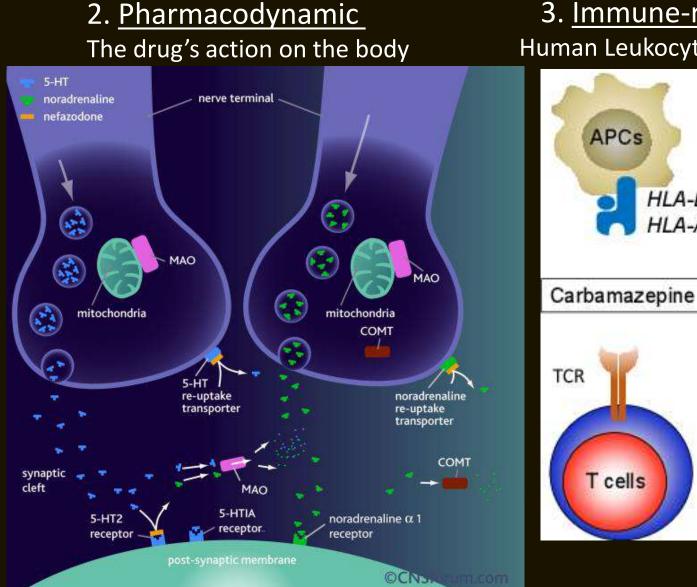
Pharmacogenomics (PGx): A Crowded Space

Professional Guidelines

- Clinical Pharmacogenetics Implementation Consortium (CPIC)

 <u>https://cpicpgx.org/</u>
- Dutch Pharmacogenetics Working Group (DPWG)
 - <u>http://upgx.eu/</u>
- Canadian Pharmacogenomics Network for Drug Safety (CPNDS)
 - <u>http://cpnds.ubc.ca/</u>


<u>Regulatory</u>

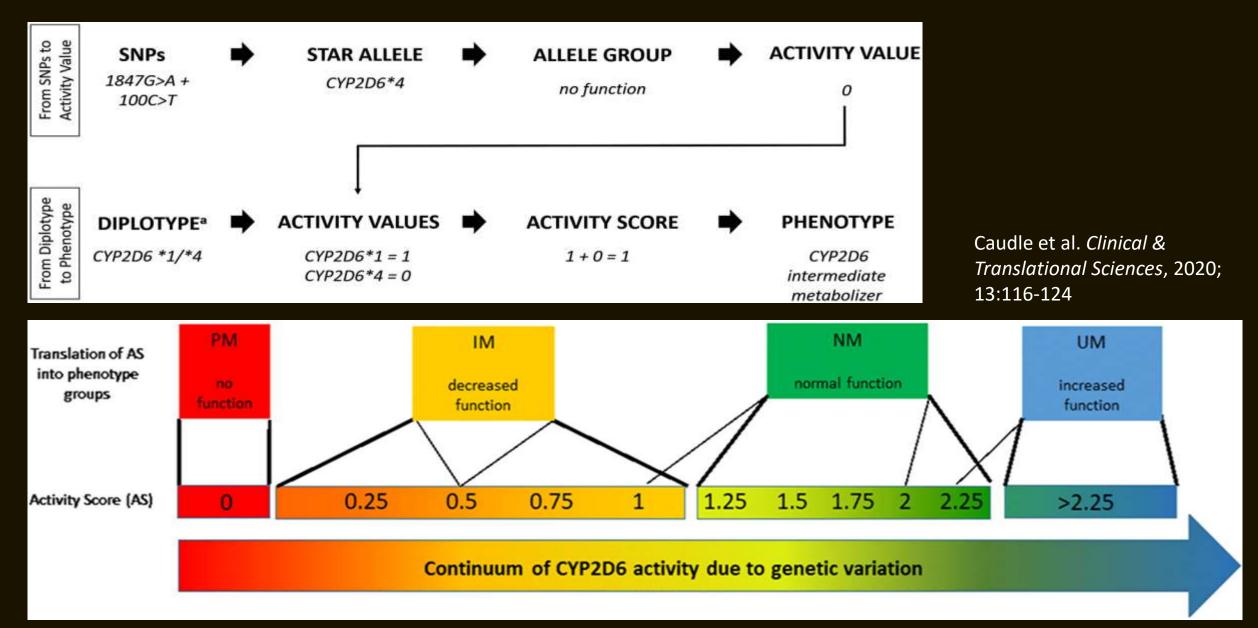

• US Food and Drug Administration (FDA)

<u>Industry</u>

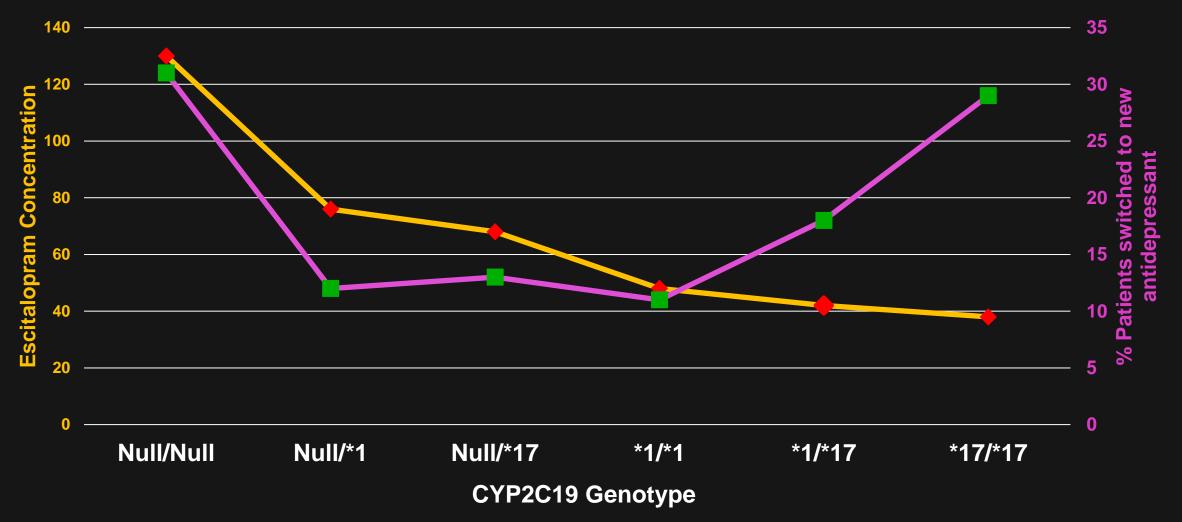
• PGx Decision Support Tool (DST) manufacturers

3 classes of Genes used in PGx DSTs

3. Immune-related Human Leukocyte Antigen

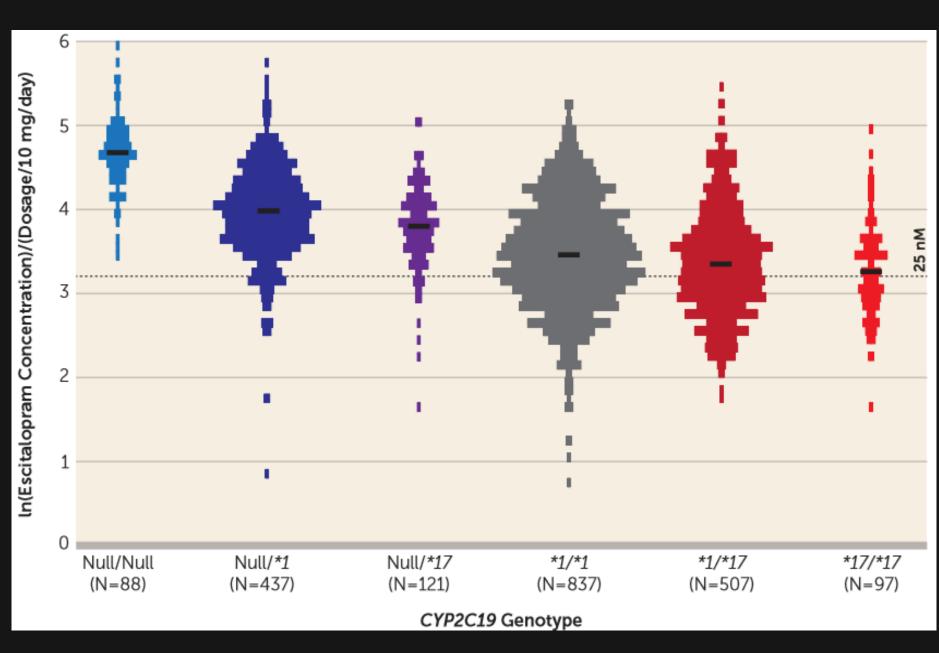

HLA-B*15:02

HLA-A*31:01


APCs

T cells

Variation in PK Genes yields Metabolomic Phenotypes


Impact of CYP2C19 on Escitalopram Exposure (Norway)

N=2,087

Jukic et al., Am J Psychiatry, 2018;175(5):463-470.

Variability in Escitalopram Concentration by CYP2C19 Genotype

Jukic et al., *Am J Psychiatry*, 2018;175(5):463-470.

N=2,087

Gene-drug pairs with clinical prescribing guidelines relevant to psychiatry

Gene	Drugs
CYP2C19	amitriptyline, citalopram, clomipramine, doxepin, escitalopram, imipramine, sertraline, trimipramine
CYP2C9	phenytoin
CYP2D6	amitriptyline, aripiprazole, atomoxetine, clomipramine, desipramine, doxepin, fluvoxamine, haloperidol, imipramine, nortriptyline, paroxetine, pimozide, trimipramine, venlafaxine
HLA-A	carbamazepine
HLA-B	carbamazepine, oxcarbazepine, phenytoin

Guidelines published as of 10 September, 2019 from CPIC, DPWG, or CPNDS

NOTE: No pharmacodynamic genes (eg SERT, 5HT2a receptor) listed in any guideline

Bousman, Forbes & Dunlop, *Precision Psychiatry*, 2020, in press

Selected psychiatric drugs with gene-drug warnings on FDA label

Drug	Gene	Adverse drug reactions	Gene-Drug interaction management in PMs	Drug-drug interaction management*
Aripiprazole	2D6	Stroke, TIA, TD, agranulocytosis, hyperglycemia	Reduce dose by half	Reduce dose by half
Atomoxetine	2D6	↑HR, BP, liver injury	Start at 0.5 mg/kg/day. Titrate at 4wk intervals	Start at 0.5 mg/kg/day. Titrate at 4wk intervals
Brexpiprazole	2D6	Stroke, TIA, TD, agranulocytosis, hyperglycemia	Start at half usual dose	Start at half usual dose for 2D6 & 3A4 inhibitors
Carbamazepine	HLA-B	Stevens Johnson Syndrome/TEN	Genotype if Asian origin: HLA-B*1502: avoid using	None
Citalopram	2C19	QT prolongation	Max dose 20 mg/day	Max dose 20 mg/day
lloperidone	2D6	QT prolongation, tachycardia, hyperglycemia, agranulocytosis	Reduce dose by half	Reduce dose by half
Pimozide	2D6	QT prolongation, TD, torsades de pointes, cardiac arrest	Genotype if use >4 mg/day. Titrate at 2 week intervals	Contraindicated
Thioridazine	2D6	QT prolongation, TD, torsades de pointes, cardiac arrest	Contraindicated	Contraindicated
Vortioxetine	2D6	Serotonin syndrome, bleeding	Max dose 10 mg/day	Reduce dose by half

Conrado et al., Pharmacogenomics 2013; 14:215-23

*If on strong CYP inhibitor

APA Task Force for Biomarkers and Novel Treatments: Conclusion on PGx Testing for Antidepressant Selection

Clinical Implementation of Pharmacogenetic Decision Support Tools for Antidepressant Drug Prescribing

Zane Zeier, Ph.D., Linda L. Carpenter, M.D., Ned H. Kalin, M.D., Carolyn I. Rodriguez, M.D., Ph.D., William M. McDonald, M.D., Alik S. Widge, M.D., Ph.D., Charles B. Nemeroff, M.D., Ph.D.

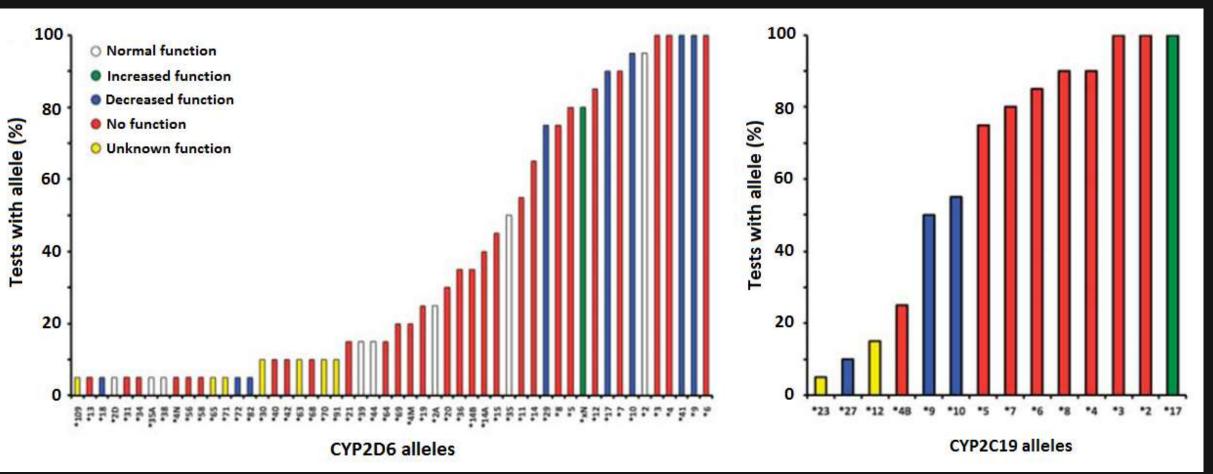
The accrual and analysis of genomic sequencing data have identified specific genetic variants that are associated with major depressive disorder. Moreover, substantial investigations have been devoted to identifying gene-drug interactions that affect the response to antidepressant medications by modulating their pharmacokinetic or pharmacodynamic properties. Despite these advances, individual responses to antidepressants, as well as the unpredictability of adverse side effects, leave clinicians with an imprecise prescribing strategy that often relies on trial and error. These limitations have spawned several combinatorial pharmacogenetic testing products that are marketed to physicians. Typically, combinatorial pharmacogenetic decision support tools use algorithms to integrate multiple genetic variants and assemble the results into an easily interpretable report to guide prescribing of antidepressants and other psychotropic medications. The authors review the evidence base for several combinatorial pharmacogenetic decision support tools whose potential utility has been evaluated in clinical settings. They find that, at present, there are insufficient data to support the widespread use of combinatorial pharmacogenetic testing in clinical practice, although there are clinical situations in which the technology may be informative, particularly in predicting side effects.

AJP in Advance (doi: 10.1176/appi.ajp.2018.17111282)

Zeier et al., Am J Psychiatry. 2018 Sep 1;175(9):873-886

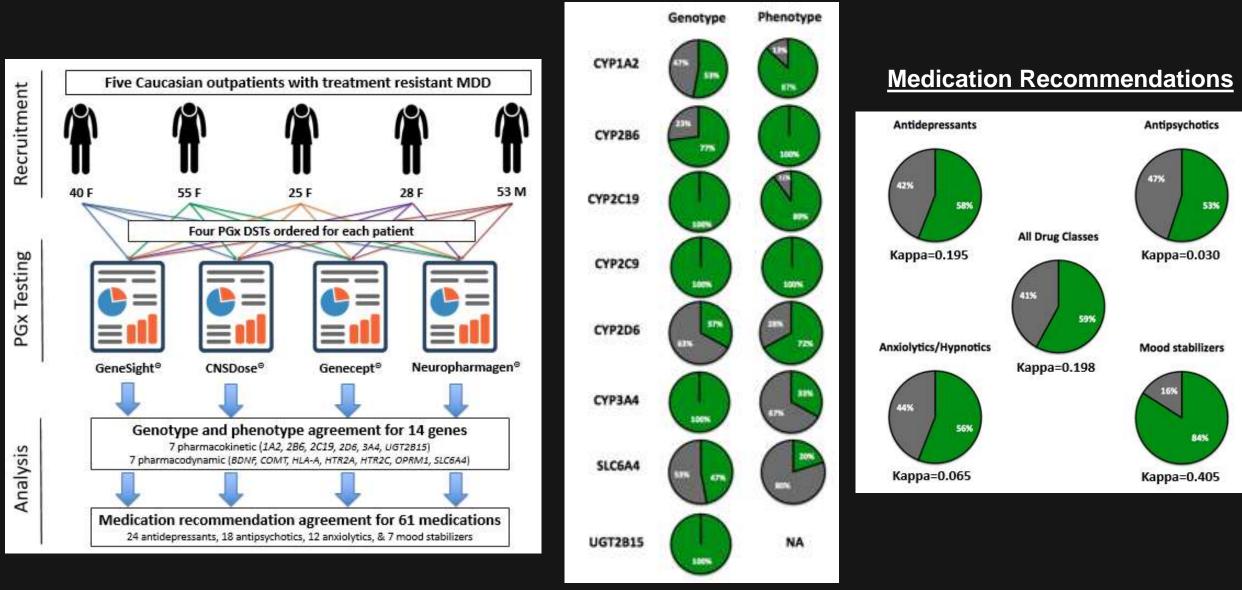
Commercially Available PGx Decision-Support Tools

Commercial PGx Tests with RCT data


PGx Test Name	Manufacturer	Number of MDD RCTs	Incorporates Drug-Drug-Gene Interactions?	Recommendations
Amplis	Luminus (CNS Dose)	1	No	 Lower dose Average dose Higher dose
Genecept Assay	Genomind	1	Yes	 Use as Directed/Therapeutic Options Use with Caution
GeneSight Psychotropic	Myriad Neuroscience	2	No	 Use as Directed Use with Caution Use with Caution and ↑ Monitoring
NeuroIDgenetix	AltheaDx	1	Yes	 Use as Directed Use with Caution or ↑ Monitoring
Neuropharmagen	AB Biotics	2	No	 Increased response or ↓ risk of ADRs Standard response Reduced response or ↑ Monitoring ↑ Risk of adverse drug reactions (ADRs)

Genes Included in Specific PGx DSTs

	Gene	Amplis	Genesight	NeurolDGenetix	Genecept v.2.0	Neuropharmagen
	CYP1A2		X	x	Х	x
	CYP2B6		X		X	x
Öu	CYP2C19	x	x	x	X	x
ARMAC KINETIC	CYP2C9		x	x	X	x
	CYP2D6	x	x	x	X	x
E	CYP3A4		x	x	X	x
	CYP3A5			x	X	
	ABCB1	x				x
PHARMACO- DYNAMIC	SLC6A4		X	X	X	x
	5HT2A		x	X		x
	5HT2C				X	x
	СОМТ			X	X	x
	BDNF				X	x
	MTHFR			X	X	
	Others				7	17


Even if including same genes, DSTs may differ in the specific allele variants tested

CYP2D6 and 2C19 Star Alleles across PGx Tests

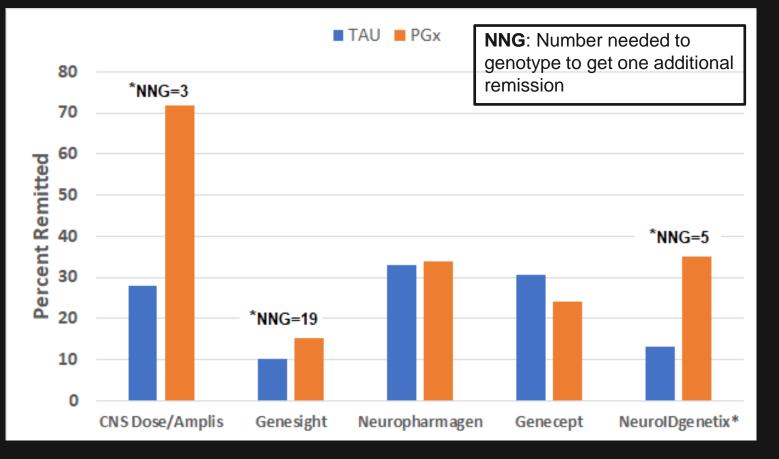
Bousman et al., Pharmacogenet Genomics, 2017; 27: 1-6.

How Interchangeable are PGx DSTs?

Bousman & Dunlop, *The Pharmacogenomics Journal*, 2018; 18(5):613-622

Summary Outcomes

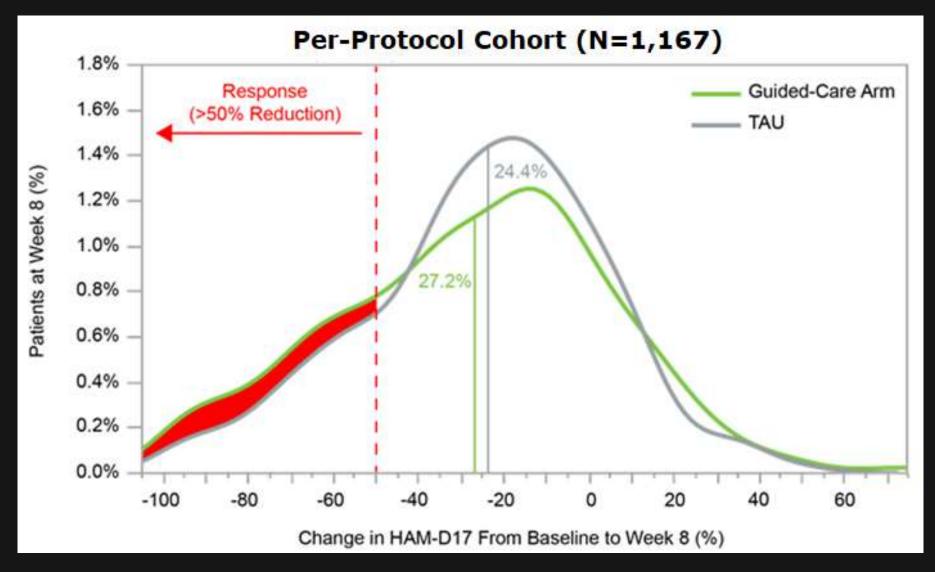
RCTs of PGx-Guided Care vs Treatment as Usual (TAU)


Except for the Amplis/CNS Dose test, each company's largest trial failed to achieve statistical significance on the pre-specified primary outcome:

- Mean symptom change (Genesight, Genecept)
- Sustained response (Neuropharmagen)
- Adverse drug reaction frequency (NeuroIDgenetix)

PGx DST	Significant Continuous Outcome	Significant Remission and/or Response Rate
Amplis/CNS Dose	n.r.	Yes
Genesight	Νο	Yes
Neuropharmagen	Νο	Yes
Genecept	Νο	Νο
NeurolDgenetix - <i>"Severe" subset</i>	n.r./No	Yes

Remission Rates across 5 PGx DSTs


PGx DST	N Analyzed	Mean # Drug Failures
CNS Dose/Amplis	148	n.r.
Genesight	1,167	3.5
Neuropharmagen	316	2.5
Genecept	296	1.4 (est.)
NeurolDgenetix	93 *("Severe" subset)	n.r.

<u>CNS Dose/Amplis:</u> Singh, *Clin Psychopharmacol & Neurosci,* 2015:150-156 <u>Genesight:</u> Greden et al., *J. Psychiatr Res,* 2019, 111:59-67 <u>Genecept</u> <u>Neuropharmagen:</u> Perez et al., *BMC Psychiatry,* 2017; 17:250 <u>NeuroIDgeneration</u>

<u>Genecept:</u> Perlis et al., *Depress Anxiety*, 2020;37(9):834-841. <u>NeurolDgenetix</u>: Bradley et al., *J Psychiatr Res*, 2018; 96:100-107

Distributions of % Change in GUIDED Trial

Greden et al., J. Psychiatr Res, 2019, 111:59-67 (suppl)

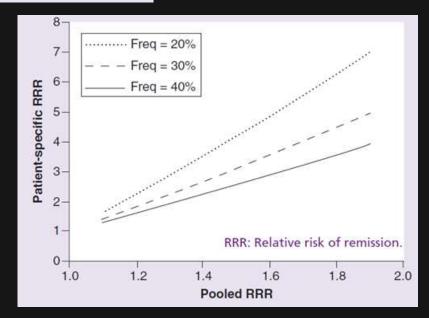
Meta-Analysis of PGx RCTs for MDD Remission

Study	G Remission	uided Total Re		iided Total	Risk ratio	RR	95%-Cl	(%) Weight	<u>N</u> 0
Greden et al. 2018 Winner et al. 2013 Singh 2015 Perez et al. 2017 Bradley et al. 2018	93 5 53 48 14	607 25 74 141 40	57 2 21 46 7	560 24 74 139 53		-2.40		28.4 5.1 25.5 27.7 13.3	G D S
Random effects mode prediction interval Heterogeneity: /2 = 71%		887 7, p < 0.0	1	850 0	1 0.5 1 2 1	1.71	[1.17; 2.48] [0.52; 5.62]	100.0	Bo Ph 20

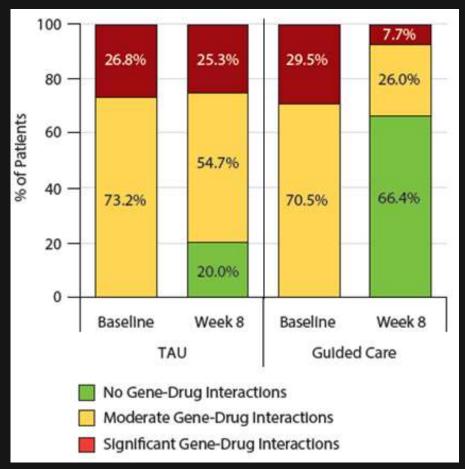
<u>NOTE:</u>

Omits Perlis et al. Genecept RCT, *Depression & Anxiety,* Sept. 2020

Bousman et al. *Pharmacogenomics*, 2019; 20(1):37-47.

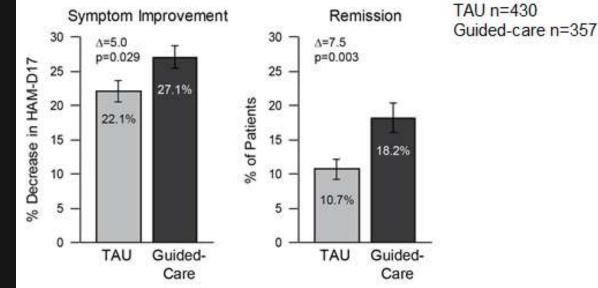

<u>Relative Risk for Remission with PGx Testing</u> 'Pooled RRR' vs 'Patient-specific RRR'

<u>"Pooled RRR":</u> Benefit in entire cohort

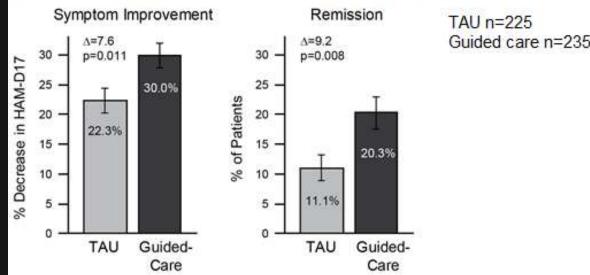

<u>"Patient-specific RRR"</u>: Benefit of PGx-informed prescribing for an individual **with an actionable genotype**

Relationship is a function of the frequency of actionable genotypes

Suthers & Polasek, *Pharmacogenomics*, 2019; 20:1061-62



Effect of PGx Guided Treatment in Patients with an identified Gene-Drug Interaction



Thase et al., J Clin Psychiatry, 2019;80(6). pii: 19m12910

All patients with a gene-drug interaction at baseline

Patients with a gene-drug interaction at baseline who switched (drop or add) medication(s) by week 8

Conclusions 1

- Determining the utility and clinical timing of conducting PGx testing to inform drug prescribing is a work in progress
 - FDA regulation of PGx LDTs is likely to increase
- Variability across PGx DST's gene profiles and trial outcomes limits making generalizable testing recommendations.
- A critique common to all PGx RCTs is the lack of blinding of the treating clinician to treatment arms
 - Cannot rule out expectancy/placebo or therapeutic zeal effects
- The remarkable finding of non-significant mean improvement, but higher remission rates, suggest PGx DSTs have a sizeable benefit in a small proportion of all tested patients, which is insufficient to drive average overall change.

Conclusions 2

- RCTs of PGx DSTs demonstrate the challenge of developing biologically-based precision-medicine approaches to MDD
 - 1. Difficult to show differences in RCTs comparing two arms with active treatment (i.e., no placebo)
 - 2. PGx RCTs are a blend of efficacy and effectiveness trial designs, in that prescribers do not need to follow the testing recommendation. Indeed, many do not.
 - 3. For the majority of patients PGx test results are not informative for antidepressant selection, greatly reducing statistical power.
- Clinical Conundrum:
 - Patients who are on a genetically-incongruent medication are mostly likely to benefit from PGx-guided care
 - BUT: Can't know if genetically incongruent until tested!